

NAGphormer: A Tokenized Graph Transformer For Node Classification In Large Graphs

Jinsong Chen1,2,3,*, Kaiyuan Gao2,3,*, Gaichao Li1,2,3, Kun He2,3,†1 Institute of Artificial Intelligence Huazhong University of Science and Technology, School of Computer Science and Technology Hopcroft Center on Computing Science chenjinsong,im_kai,gaichaolee,brooklet60}@hust.edu.cn

Code: https://github.com/JHL-HUST/NAGphormer.

— ICLR 2023

2023. 8. 24 • ChongQing

Chongqing University of Technology

ATAI Advanced Technique of Artificial Intelligence

1.Introduction

2.Overview

3.Methods

4.Experiments

Introduction

QUESTION:

1. Existing graph Transformers hard to scale to large graphs

2、over-smoothing and over-squashing problems, the negative influence of these inherent limitations cannot be eliminated completely.

WORK:

1. **Hop2Token**, resulting in a sequence of token vectors that preserves neighborhood information for different hops, regard each node in the complex graph data as a sequence of tokens.

2、**NAGphorme**r, for the node classification task. In self-attention mechanism, it can learn more expressive node representations from the multi-hop neighborhoods

3、develop an **attention-based readout function** to adaptively learn the importance of different-hop neighborhoods to further boost the model performance.

Overview

Model framework of NAGphormer

(1)

(6)

Graph Neural Network (GNN)

$$\mathbf{H}^{(l+1)} = \sigma(\hat{\mathbf{A}}\mathbf{H}^{(l)}\mathbf{W}^{(l)}),$$

Decoupled Graph Convolutional Network (GCN)

$$\mathbf{Z} = \sum_{k=0}^{K} \beta_k \mathbf{H}^{(k)}, \mathbf{H}^{(k)} = \hat{\mathbf{A}} \mathbf{H}^{(k-1)}, \mathbf{H}^{(0)} = \boldsymbol{f}_{\theta}(\mathbf{X}),$$

Hop2Token

 $\mathbf{X}' = \mathbf{X} \| \mathbf{U}. \tag{10}$

$$egin{aligned} \mathbf{x}_v^k &= \phi(\mathcal{N}^k(v)). \ \mathbf{X}_k &= \hat{\mathbf{A}}^k \mathbf{X}. \ \mathcal{S}_v &= (\mathbf{x}_v^0, \mathbf{x}_v^1, ..., \mathbf{x}_v^K) \end{aligned}$$

Method

$$\mathbf{Z}_{v}^{(0)} = \left[\mathbf{x}_{v}^{0}\mathbf{E}; \ \mathbf{x}_{v}^{1}\mathbf{E}; \ \cdots; \ \mathbf{x}_{v}^{K}\mathbf{E}\right],$$
(7)

$$\mathbf{Z}_{v}^{\prime(\ell)} = \mathrm{MSA}\left(\mathrm{LN}\left(\mathbf{Z}_{v}^{(\ell-1)}\right)\right) + \mathbf{Z}_{v}^{(\ell-1)}, \qquad (8)$$

$$\mathbf{Z}_{v}^{(\ell)} = \operatorname{FFN}\left(\operatorname{LN}\left(\mathbf{Z}_{v}^{\prime(\ell)}\right)\right) + \mathbf{Z}_{v}^{\prime(\ell)},\tag{9}$$

$$\alpha_k = \frac{exp((\mathbf{Z}_0 \| \mathbf{Z}_k) \mathbf{W}_a^{\top})}{\sum_{i=1}^{K} exp((\mathbf{Z}_0 \| \mathbf{Z}_i) \mathbf{W}_a^{\top})},$$
(11)

$$\mathbf{Z}_{out} = \mathbf{Z}_0 + \sum_{k=1}^{K} \alpha_k \mathbf{Z}_k.$$
 (12)

Method	Pubmed	CoraFull	Computer	Photo	CS	Physics
GCN GAT	86.54 ± 0.12 86.32 ± 0.16	61.76 ± 0.14 64.47 ± 0.18	89.65 ± 0.52 90.78 ± 0.13	92.70 ± 0.20 93.87 ± 0.11	92.92 ± 0.12 93.61 ± 0.14	96.18 ± 0.07 96.17 ± 0.08
APPNP GPRGNN	80.32 ± 0.10 88.43 ± 0.15 89.34 ± 0.25	65.16 ± 0.28 67.12 ± 0.31	90.18 ± 0.17 90.18 ± 0.17 89.32 ± 0.29	94.32 ± 0.14 94.49 ± 0.14	94.49 ± 0.07 95.13 ± 0.09	96.54 ± 0.07 96.85 ± 0.08
GraphSAINT PPRGo GRAND+	88.96 ± 0.16 87.38 ± 0.11 88.64 ± 0.09	$\begin{array}{c} 67.85 \pm 0.21 \\ 63.54 \pm 0.25 \\ 71.37 \pm 0.11 \end{array}$	$90.22 \pm 0.15 \\88.69 \pm 0.21 \\88.74 \pm 0.11$	$\begin{array}{c} 91.72 \pm 0.13 \\ 93.61 \pm 0.12 \\ 94.75 \pm 0.12 \end{array}$	$94.41 \pm 0.09 \\92.52 \pm 0.15 \\93.92 \pm 0.08$	$96.43 \pm 0.05 95.51 \pm 0.08 96.47 \pm 0.04$
GT Graphormer SAN GraphGPS	$\begin{array}{c} 88.79 \pm 0.12 \\ \text{OOM} \\ 88.22 \pm 0.15 \\ 88.94 \pm 0.16 \end{array}$	61.05 ± 0.38 OOM 59.01 ± 0.34 55.76 ± 0.23	91.18 ± 0.17 OOM 89.83 ± 0.16 OOM	$\begin{array}{c} 94.74 \pm 0.13 \\ 92.74 \pm 0.14 \\ 94.86 \pm 0.10 \\ 95.06 \pm 0.13 \end{array}$	$\begin{array}{c} 94.64 \pm 0.13 \\ \text{OOM} \\ 94.51 \pm 0.15 \\ 93.93 \pm 0.12 \end{array}$	$\begin{array}{c} 97.05 \pm 0.05 \\ OOM \\ OOM \\ OOM \end{array}$
NAGphormer	$\textbf{89.70} \pm \textbf{0.19}$	$\textbf{71.51} \pm \textbf{0.13}$	$\textbf{91.22} \pm \textbf{0.14}$	$\textbf{95.49} \pm \textbf{0.11}$	$\textbf{95.75} \pm \textbf{0.09}$	$\textbf{97.34} \pm \textbf{0.03}$

Table 1: Comparison of all models in terms of mean accuracy \pm stdev (%) on small-scale datasets. The best results appear in **bold**. OOM indicates the out-of-memory error.

Experiments

Table 2: Comparison of all models in terms of mean accuracy \pm stdev (%) on large-scale datasets. The best results appear in **bold**.

Method	AMiner-CS	Reddit	Amazon2M
PPRGo	49.07 ± 0.19	90.38 ± 0.11	66.12 ± 0.59
GraphSAINT	51.86 ± 0.21	92.35 ± 0.08	75.21 ± 0.15
GRAND+	54.67 ± 0.25	92.81 ± 0.03	75.49 ± 0.11
NAGphormer	$\textbf{56.21} \pm \textbf{0.42}$	$\textbf{93.58} \pm \textbf{0.05}$	$\textbf{77.43} \pm \textbf{0.24}$

	Pubmed	CoraFull	CS	Computer	Photo	Physics	Aminer-CS	Reddit	Amazon2M
W/O-SE With-SE	89.06 89.70	70.42 71.51	95.52 95.75	90.44 91.22	95.02 95.49	97.10 97.34	55.64 56.21	93.47 93.58	76.98 77.43
Gain	+0.64	+1.09	+0.23	+0.78	+0.47	+0.24	+0.57	+0.11	+0.45

Table 3: The accuracy (%) with or without structural encoding.

Experiments

Figure 2: The performance of NAGphormer via different readout functions.

Experiments

Figure 3: Performance of NAGphormer on different parameters.

